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Abstract

A hybrid method to simulate unsteady multiphase flows in which a sharp interface separates incompressible fluids of

different density and viscosity is described. One phase is represented by moving particles and the other phase is defined

on stationary mesh. The flow field is discretized by a conservative finite volume approximation on the stationary mesh,

and the interface is automatically captured by the distribution of particles moving through the stationary mesh. The

effects of surface tension and wall adhesion are evaluated by the continuum surface force model. The different phases

are treated as one fluid with variable material properties. Advection of fluid properties such as density and viscosity is

done by following the motion of the particles. The method simplifies the calculation of interface interaction, enables

accurate modeling of two- and three-dimensional multiphase flows and does not impose any modeling restrictions

on the dynamic evolutions of fluid interfaces having surface tension. Several two-dimensional numerical simulations

are given to illustrate the efficiency of the hybrid method.
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1. Introduction

Accurate simulation of multiphase flows with a sharp interface has considerable difficulty in numerical

methods. Problems with a moving interface are important in many technological applications in which
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moving interfaces play a dominant role. Capillarity phenomena, wetting effect, deformation of droplet or

bubble, motion of boundaries between immiscible fluids are some of well-known examples in engineering

and science. In order to describe quantitatively such problems, the understanding of physical processes tak-

ing place on the interfaces is necessary. In particular, successful simulation of the moving interfaces depends

on the numerical method in which the corresponding interfaces can be captured effectively.
The most popular approach to compute multiphase flows is to capture the front directly on a regular,

stationary mesh. For example, marker-and-cell (MAC) [1] method uses marker particles to identify each

fluid. The volume-of-fluid (VOF) [2] method uses a marker function to identify the interface. The main dif-

ficulty in using these methods is the maintenance of a sharp boundary between two phases and the compu-

tation of surface tension. Further developments to the methods that capture fluid interfaces on a fixed grid

include the CIP [3] method and the phase field method [4], etc.

Adaptive (moving) grid methods alter the computational grid so that the interface always coincides with

one of the grid lines. The interface is then a well-defined, continuous curve. The information regarding the
location and curvature of the interface is readily available. The review of techniques for the construction of

boundary conforming coordinates is referred to [5]. The main advantage of this approach is that it is pos-

sible to maintain sharp resolution of the interface, while the main disadvantage is the difficulty in adjusting

the grids to follow the highly deformed interfaces.

The front tracking is another method where the interface itself is descried by additional computational

elements, and the fixed grid is kept unchanged. The major difficulty of direct front tracking is the ques-

tion of how the interface grid interacts with the stationary grid, and vice versa. It is also necessary to

restructure the interface grid dynamically as the calculations proceed. Computational points must be
added in regions where the interface grid points become scattered, and eliminated from regions of con-

centration. Another problem in front tracking results from the interaction of a front with another front.

Double interfaces have to be merged into one interface or eliminated. A merging algorithm is usually

used. A development to this method made by Tryggvason et al. [6] is a hybrid between front capturing

and front tracking technique. A stationary regular grid is used for the fluid flow, but the interface is

tracked by a separated grid of lower dimension. However, unlike front tracking methods where each

phase is treated separately, all phases are treated together by solving a single set of governing equations

for the whole field. The explicit tracking of the interface reduces errors associated with the surface ten-
sion computations, and its flexibility makes it applicable to problems where complex interface physics

must be accounted for. The specific difficulties with front tracking are discussed by Glimm et al. [7]

and two computational algorithms to handle changes in the interface topology for dynamic interface

tracking in three dimensions have been described [8].

From the point of view of numerical algorithms, the methods mentioned above are classified as Eule-

rian method. Lagrangian method is another category, which is suited for moving boundary problems

because it permits interfaces to be specifically delineated and precisely followed and it allows interface

boundary conditions to be easily applied [5]. The two main problems of the Lagrangian methods are
mesh tangling and numerical inaccuracy due to highly irregular meshes. Particle method is another La-

grangian description of flows in which particles are explicitly associated with different materials and

thus the interfaces can be easily followed. The well-known example is the particle-in-cell (PIC) [9] al-

gorithm. The basic idea of PIC is to divide the region of interest into regular Eulerian cells for purposes

of computing field variables such as pressure and fluid velocity, and to simulate the material transport

from cell to cell in a Lagrangian fashion in the form of discrete simulation particles. The attractive

features of the method are no mass diffusion and the ability of treating large distortions of fluids, large

slippages, and colliding interfaces. The problems consist of a large numerical diffusion caused by transfer-
ring the momentum from the grid to the particle and back, numerical noise caused by the use a finite

numerical of fluid particles, and limited spatial resolution because of a fixed uniform Eulerian grid being

used.
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The Lagrangian particle method called smooth particle hydrodynamics (SPH) [10] abandons grid

completely. The approximation of spatial derivatives is derived from the interpolation among particles.

Moving particle semi-implicit (MPS) [11–19] method is another meshless method where the fluids are

represented by a finite number of moving particles. Governing equations are discretized based on par-

ticle interaction models representing gradient, Laplacian, and free surface. Grids are not necessary at
all. Thus, the method is free from the grid distortion. A semi-implicit algorithm is employed to an-

alyze incompressible flows. The numerical diffusion derived from the convection terms does not arise

because of fully Lagrangian description. The MPS method was applied to multi-phase and multi-fluid

thermal-hydraulic problems such as free surface flows [12], droplet breakup [13], single bubble rise

and nucleate boiling [14,15], jet injection [16], fragmentation [17,18], large deformation and fracture

of solid [19], etc.

For the accurate prediction of multiphase flows, the numerical method must possess the ability of eval-

uation surface tension forces at interface. In the continuum surface force (CSF) model [20], a surface force
is modeled with a localized volume force. Instead of a surface tensile force or a surface pressure boundary

condition applied at a discontinuity, a volume force acts on fluid interfaces within finite thickness contin-

uously. Surface tension modeled with the continuum method eliminates the need for interface reconstruc-

tion, and can be easily calculated by applying an extra body force in the momentum equation.

In this paper, we present a hybrid method for incompressible, viscous, multiphase flows by coupling

MPS method with mesh method. One fluid (or phase) is represented by moving particles, while another

fluid (or phase) is defined on the mesh. The interfaces are automatically determined by the distribution of

particles without specific front tracking algorithms, and no numerical diffusion arises. The original under-
lying mesh is retained through the simulations and no restructuring is needed. The CSF model will be

used to evaluate the surface tension force, and all phases are treated together by solving a single set

of governing equations for the whole flow field. The primary advantage of this approach is that the in-

terfaces carry the jump of properties and that, at each time step, the property field is easily calculated

from the information carried by the distribution of particles. The interactions of the interfaces automat-

ically taken care of in the present method is considered one of the major differences from the previous

front-tracking methods.
2. Numerical method

2.1. Description of multiphase flow by particle and mesh

In the present method, the multiphase flow region of interest is divided into regular Eulerian mesh for

purposes of computing field variables such as pressure and fluid velocity. Some part of the region is occu-

pied by a finite ensemble of particles, which represents one phase (liquid phase, for example, in gas-liquid
two-phase flow). The rest part of the region not occupied by the particles is another phase (gas phase, for

example). The general setup of particle and mesh is sketched in Fig. 1.

The use of particles is the same way as that in MPS method. Each particle has a set of attributes, such as

mass and position. Since the particles are explicitly associated with one phase, the interfaces between dif-

ferent phases can be easily followed by the distribution of particles. The whole multiphase flow system will

be calculated on the mesh, and the advection of the density and the viscosity fields is achieved by following

the motion of particles. The velocities calculated on the mesh are used to advance the particles. The attrac-

tive features of the method are that the mass conservation is preserved, and the interaction of interfaces is
possible. Furthermore, the continuous change of physical quantities to eliminate the numerical noise is en-

sured. The transfer of information between the particles and the grid will be given in detail in the following

sessions.
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Fig. 1. The setup of mesh and particle.
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2.2. Governing equations

The equations governing the motion of unsteady, viscous, incompressible multiphase flows are the laws

of conservation of mass
I
S

v
* � n* dS ¼ 0; ð1Þ
and momentum
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where t represents time, v
*
, p, and q are velocity vector, the pressure and the density of the fluid, respective-

ly; ��I is the identity matrix, V is the volume occupied by the fluid, S is the surface area formed by the bound-

ary of this volume, and n
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where l is the dynamic viscosity, and u and v are the horizontal and vertical components of the velocity,

respectively.

Although f
*

V has the form of a volume force, it also includes the effect of the surface tension in the pre-
sent method, which will be discussed in the following session.

2.3. Surface tension model

In the present method, the interfaces are represented by the interfacial particles. The interfacial particles

can be easily determined by the particle number density, which was defined originally in the MPS method

[11]. The particle number density n of particle i is defined as
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ni ¼
X
j 6¼i

w j r*j � r
*

ij
� �

; ð4Þ
where r
*
is the coordinate, and w is weight function defined by
wðrÞ ¼
re
r � 1; r6 re;

0; r > re;

�
ð5Þ
here r is the distance between two particles, re is radius of interaction area. The particle number density is
proportional to the fluid density. The mass conservation law of incompressible flow requires that the fluid

density should be constant. This is equivalent to the particle number density being constant, n0. The method

to maintain this constant value will be discussed in the following session. A particle whose particle number

density satisfies
ni < bn0 ð6Þ

is regarded as the interface, where b is a parameter below 1.0. Unlike the front tracking method, in which

the interface consists of connected marker points in two dimensions, it is not necessary to order these in-

terfacial particles to calculate such quantities as surface tension. We will model the interfacial quantities by

using the particle interactions with the kernel function, which are the same as those in MPS method [11].

The surface tension force is calculated on the particles that are regarded as interface. In the present
method, surface tension is modeled as a volume force derived from the CSF model [20]. The surface force

per unit interfacial area can be written as
f
*

sa ¼ rjin̂i; ð7Þ

where r is the surface tension coefficient, j is the curvature of the interface and n̂ is unit normal to the in-

terface. The curvature is calculated form
j ¼ �ðr � n̂Þ ð8Þ
Fig. 2. Definition of vector normal and contact angle.
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and the unit normal is derived from normal vector
n̂ ¼ n
*

j n* j
: ð9Þ
The normal vector can be obtained by a gradient of particle number density at the interface. As shown in

Fig. 2, a gradient vector between two particles i and j possessing ni and nj at coordinates r
*
i and r

*
j is simply

defined by ðnj � niÞð r
*
j � r

*
iÞ=j r

*
j � r

*
ij2. The gradient vectors between particle i and its neighboring particles

j are weighted with the kernel function and averaged to obtain a gradient vector at particle i:
n
*

i ¼ ðrnÞi ¼
d
ni

X
j 6¼i

nj � ni

j r*j � r
*

ij2
ð r*j � r

*
iÞwðj r

*
j � r

*
ijÞ

" #
; ð10Þ
where d is the number of space dimensions [11].

The divergence of unit normal vector is calculated by
ðr � n̂Þi ¼
d
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where n̂ is unit normal vector, ni is particle number density. The values calculated by Eqs. (10) and (11) are

first order accurate because of the asymmetric distribution of particles at the interface.

The surface force f
*

sa per unit interfacial area acting on particle i can be transferred to volume force f
*

sv.

If the average distance between particles is d, the volume force is estimated by f
*

sv ¼ f
*

sa=d in two dimen-

sions because the area of a particle is d2.

With the volume force, surface tension effects at interface are modeled as a body force included in the

momentum equation (2), instead of a surface tensile force or a surface pressure boundary condition applied

at a discontinuity.
2.4. Boundary conditions: wall adhesion

Wall adhesion is the surface force acting on fluid interfaces at points of contact with ‘‘walls’’, which are

static, rigid boundaries. Wall adhesion forces are calculated in the same manner as volume forces due to

surface tension are calculated, using Eq. (7) for f
*

sa, except that a boundary condition is applied to the in-

terface unit normal n̂ prior to evaluating Eq. (7). The condition is applied only to those particles near a rigid

boundary, as shown in Fig. 2. The wall adhesion boundary condition becomes an expression for the unit

interface normal n̂ at points of contact r
*

w along the wall [20]:
n̂ ¼ n̂w cos heq þ n̂t sin heq; ð12Þ

where heq is the static contact angle between the fluid and the wall, n̂w is the unit wall normal directed into

the wall, and n̂t is tangent to the wall, normal to the contact line between the interface and the wall at r
*
w.

The unit tangent n̂t is directed into the fluid. The angle heq is not a fluid material property, but a system

property, depending also on properties of the wall itself. The value of heq is measured experimentally when

the fluid is at rest. So in the present method the treatment of wall adhesion is static because heq is assumed

to be a constant.
2.5. Mesh calculation by finite volume method

Computational solutions of Eqs. (1) and (2) are obtained on a staged mesh (Fig. 3). The pressure, den-

sity, and viscosity are defined at the center of each cell; the horizontal component of the velocity is placed at



Fig. 3. Staggered mesh.
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the center of the vertical cell faces; and the vertical component of the velocity is located at the center of the

horizontal cell faces.

In the present method, the interface is automatically determined by the distribution of particles. The

mesh is stationary and the particle is moving so information transfer is required from each other. The trans-

fer is as follows: (1) a resultant surface force is computed on the interfacial particles and must be distributed

to the background mesh; (2) the density and viscosity of the particles are distributed to the background

mesh; (3) the velocity of the fluid is computed on the background mesh and must be interpolated to the
particles.

The resultant surface force is distributed to the Cartesian mesh using an area-weighted extrapolation,

and incorporated into Eq. (2) through the force term, f
*

V . The procedure is as follows: (1) the cell that en-

closes the center of the interfacial particle is found; (2) the neighbors of the cell are found; (3) the fractional

areas that the particle occupied on the neighbor cells are computed; (4) these fractional areas are used to

distribute the surface force f
*

sv to the four cells. This procedure is sketched in Fig. 4. The expression for the

force assigned to each cell is
ðf
*

vÞk ¼
1

V
f
*

svAk; ð13Þ
Fig. 4. Extrapolation of surface force from particle to mesh.



72 J. Liu et al. / Journal of Computational Physics 202 (2005) 65–93
where k indicates each cell around the center of the particle, V is the volume of cell, Ak is the fractional area

associated with the ð
P4

k¼1Ak ¼ 1Þ. The distribution is performed for all interfacial particles, and the contri-

butions of different particles to the same cell are added. A similar expression is used for the density and

viscosity of particles. The cell neighbors are included in the averaging as a form of smoothing to avoid

sharp jumps in the density and viscosity, which can produce spurious spikes in the solution.
The description of fluid by particles prohibits intersected interfaces, which is a serious problem in front

tracking method. If the size of particle is the same as the computational cell, at least one particle per cell is

guaranteed. Since the particles move independently of one another, special measures must be taken to pre-

vent particles from clustering. This will be discussed in the following session.

The finite-volume discretization of Eqs. (1) and (2) is used,
X
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v
* � n*DS ¼ 0; ð14Þ
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where V is the size of the control volume; DS is the size of a face; n

*
is the outward normal to the face; and

the total flux has been divided into three components: convective fluxes ð��F convÞ, pressure fluxes ð��F pressÞ, and
viscous fluxes ð��F viscÞ, which are defined in two dimensions as
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ð16Þ
where u and v are the x- and y-components of the velocity vector, respectively.

In the staggered mesh, the control volume used for conservation of mass is centered at the cell centroid,

the one of the conservation of momentum in the x-direction is centered at the right face, and the one for the

conservation of momentum in the y-direction is centered at the upper face (Fig. 3).

The equations are solved by means of a projection method. Here the first order method is presented for

discussion purposes, because the information transfer between the stationary mesh and moving particles is

clear by using forward Euler time integration. We will address the effect of second order method through

calculation examples in the following session. Once the mesh density field has been updated, the velocity
field can be computed. By the standard first order projection method, the momentum equation is split into

two parts:
qnþ1 v
*�

V � ðq v
*
V Þv

Dt
¼ �

X
faces
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ðq v
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where v
*�

is temporal velocity. By using the mass conversion equation at new time,
X
faces

v
*nþ1

� n*DS ¼ 0; ð19Þ
the pressure equation is found by eliminate v
*nþ1

from Eq. (18) as
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v
*�

� n*DS: ð20Þ
The updated velocity is then found from Eq. (18). The second order finite-volume discretization is used

for the viscous term and pressure term, while the first order donor-cell scheme is used for the convection

term. On the staggered mesh, a simple averaging is used for points where the variables are not defined.

The time advection is calculated by explicit first order method.

In an ideal two-phase flow where the densities of the two phases are the same, Eq. (20) produces sepa-

rable elliptic equation solvable by the specialized technique such as the conjugate gradient (CG) method.

But when the densities are different and the equation is non-separable, the choice of method is limited.
For large density ratios, more efficient methods to solve the Poisson equation of pressure may fail to con-

verge. Here a simple successive over relaxation (SOR) method is used when the density ratio is large, and

the multigrid method is applied to accelerate the iteration. The over-relaxation parameter by which the

pressure equation is solved depends on the density ratio of different fluids. Sometimes the alternating direc-

tion implicit (ADI) method is used when the density ratio is modest.

2.6. Particle calculation

Since the fluid velocities are computed on the fixed mesh and particles move with the fluid velocities, the

velocity of particles must be found by interpolating from the fixed mesh. The interpolation starts by iden-

tifying the grid points that are closest to the particle. The particle velocity is then interpolated by area-

weighted interpolation which incorporates most of the features developed for the distribution of the surface

force described above. Once the velocity of each particle has been found, its new position can be found by

integration
r
*�

¼ r
*n

i þ v
*n

iDt; ð21Þ

where r

*
is the particle position, v

*
is the particle velocity, and Dt is the time step. The accuracy of this in-

tegration is the same as that in solving momentum equation (15), which is explicit first order. In the future

we will use higher order time integration method to increase the accuracy.

The continuity equation requires that the fluid density should be constant. This is equivalent to the

particle number density being constant, n0. When the particle number density n* is not n0, it is corrected

to n0
n� þ n0 ¼ n0; ð22Þ

where n 0 is the correction value. This is related to the velocity correction value v

*0
through the mass conser-

vation equation [11]:
1

Dt
n0

n0
¼ �r � v*

0
: ð23Þ
The velocity correction value is derived from a correction pressure gradient term as
v
*0

¼ �Dt
q
rp0; ð24Þ
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where p 0 is the correction pressure, q is the density of fluid represented by particles. With Eqs. (22)–(24), a

Poisson equation of correction pressure is obtained:
hr2p0ii ¼ � q
Dt2

hn�ii � n0

n0
: ð25Þ
Deterministic particle interaction models representing gradient and Laplacian given in the MPS method

[11–19] are second order accurate for symmetrically distributed particles. The Poisson equation is solved

by the incomplete Cholesky conjugate gradient (ICCG) method [11] with a Dirichlet boundary condition

(p 0 = 0) given to the particles at interfaces. It should be noted that the correction pressure in Eq. (25) is dif-

ferent from the pressure defined in Eq. (20). Here the correction pressure p 0 is defined on particles, which
originates from the deviation of particle number density. This pressure correction value is used to modify

the position of particles. While the pressure p in Eq. (20) is defined on mesh, which is solved on the whole

computational domain as a field variable.

The velocity correction is computed by Eq. (24), and the position of particle is modified by the velocity

correction value:
r
*nþ1

i ¼ r
*�
i þ v

*0
iDt: ð26Þ
In each time step a well-distributed particles is guaranteed by keeping the particle number density. After the

particle�s position is adjusted, the particle�s velocity is omitted. Only the velocities defined on mesh remain.
Start

Input of calculation parameters

Set initial value to flow field

Particle density, viscosity, and surface
force are extrapolated to Mesh

Mesh calculation by Finite Volume Method

Particle velocity is interpolated from Mesh

Particle moves and its position is modified
by particle number density

Output

Termination

End

Output of velocity
and pressure.

Increment of
time Step:

Fig. 5. Algorithm of the hybrid method.
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2.7. Solution algorithm

The overall algorithm is described in Fig. 5. First, the particle�s density and viscosity, and the surface

force calculated on the interfacial particles are extrapolated to mesh, and then the velocity and pressure

fields are calculated on mesh by finite volume method. Next, the particle�s velocity is interpolated from
the mesh, and then the particle moves with this velocity. Finally, the position of particle is modified by

the particle number density.

Since the velocity update algorithm of Eqs. (17) and (18) is explicit, there is a restriction on the maximum

time step for a stable solution,
0:25ðjuj þ jvjÞ2maxDt
1

v
6 1 and

Dt
1
vDx

2
6 0:25; ð27Þ
where v is kinematic viscosity, Dx is the size of mesh cell, and it is assumed that Dx = Dy.
3. Computational examples

Here present the results for several standard static and dynamic problems with surface tension to illus-

trate the flexibility and accuracy of the hybrid method.

3.1. Equilibrium rod

A static liquid drop will become spherical under surface tension in the absence of gravitational or other

external forces. For an infinite cylinder surrounded by a background fluid at zero pressure, the internal

drop pressure, pdrop, will be
pdrop ¼ rj ¼ r=R; ð28Þ
where R is the drop radius. Here the calculation of equilibrium rod with surface tension is carried out on a

two-dimensional computational domain. A regular orthogonal 66 · 66 mesh (Dx = Dy = 0.001 m) parti-
Fig. 6. Initial configuration of mesh and particles.
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tions the domain, with background density q = 500 kg/m3. A fluid drop with radius R = 0.02 m, density

q = 1000 kg/m3, and surface tension coefficient r = 0.02361 N/m, is centered at the point (0.03, 0.03).

The fluid drop is represented by 2020 particles with distance D = 0.001 m between them. The configuration

of mesh and particle is shown in Fig. 6. Since the initial distribution of particles does not form exactly a rod,

the particle�s position will be adjusted under surface tension to form a more circular one. Fig. 7 shows the
position of particles at about 0.5 s. From Eq. (28), the pressure inside the fluid drop is 1.1805 Pa under the

surface tension coefficient given above. This value is compared with the mean drop pressure computed by

an average process defined as
hpi ¼ 1

Np

XNp

i¼1

pi; ð29Þ
where the sum is over the Np particles lying within the drop that have particle number density ni > bn0. Fig.
8 shows the computed mean drop pressure by Eq. (29) and its variation with time. Since the particles on the
Fig. 7. Mesh and particles at time 0.5 s.
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Fig. 9. Kinetic energy versus time for the equilibrium rod.

J. Liu et al. / Journal of Computational Physics 202 (2005) 65–93 77
interface oscillate around the equilibrium position, the mean drop pressure waves around the analytical
value. The result suggests that smoothing algorithm for the surface tension calculation is necessary to

obtain an accurate, uniform drop pressure. Without smoothing process, relative errors in the curvature

of interface are nearly 80%. However, the convergence of surface tension model is demonstrated by the

kinetic energy versus time shown in Fig. 9, in which the kinetic energy increases during 0–4 s but maintains

at about 1 · 10�5 J. The result in Fig. 8 also shows that the definition of interfacial particles by Eq. (6) is not

sensitive to the parameter b.
The mesh refinement study for the equilibrium rod is shown in Fig. 10, with a coarse mesh

(Dx = Dy = 0.002 m) and a fine mesh (Dx = Dy = 0.0005 m). To examine the convergence rate of the solu-
Fig. 10. Mesh refinement test for equilibrium rod. (a) Coarse mesh, (b) fine mesh.
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tion with respect to mesh size, the time-averaged error of the mean drop pressure is given in Fig. 11 as a

function of the mesh size. This figure shows that the convergence rate with respect to mesh size is close

to linear.
In the present method, the surface tension force is calculated based purely on the distribution of parti-

cles. Therefore, the accuracy of surface tension model has no relation with the density of particle. As dis-

cussed in the session of the pressure equation, the efficiency of Poisson solver depends on the density ratio

of different fluids. In general, the Poisson solver requires more iteration with smaller relaxation parameter

for large density ratios.

In order to achieve a second order accuracy, we have tried to use second order centered difference scheme

for the spatial variables in mesh calculation. But to achieve a second order accuracy in time is more com-

plex because the implicit treatments of particle motion and surface tension force are necessary. In this static
drop problem we have used a simple predictor-corrector scheme. At first the explicit solution at third step

n + l serves as a predictor. Then the centered difference scheme for the time is used for time integration. The

surface tension force is calculated using position of the interfacial particles at time of n + 1/2. The calcula-

tions by the second order scheme on two different meshes (Dx = Dy = 0.001 m and Dx = Dy = 0.0005 m) are

carried out with the same time intervals as those in the calculations by the first order scheme. The time-

averaged errors of the mean drop pressure are compared in Fig. 11. The result shows that the accuracy

is improved but the convergence rate with respect to mesh size is not quadratic. The main reason is that

the accuracy of surface tension model is first order. As discussed above, the non-smooth distribution of
the interfacial particles leads to pressure fluctuations, which also contributes to a decrease in the overall

convergence rate and the numerical stability. In the future we will use smoothing technique to increase

the accuracy of surface tension model.

3.2. Non-equilibrium rod

An initially square drop is numerically calculated to observe the behavior responding to unbalanced sur-

face tension forces. A square ethanol drop with q = 797.88 kg/m3 and r = 0.02361 N/m is centered on a
domain with 96 · 96 mesh (Dx = Dy = 0.0025 m). The drop consists of 30 · 30 particles (D = 0.0025 m).

A small density (q = 1.0 kg/m3) and a small viscosity (l = 10�5 Pa s) are given to the background fluid de-

fined on the mesh. The gravitational and other external forces are neglected. The oscillations of the surface

of the drop about its equilibrium shape are shown in Fig. 12 at a time sequence, t = 0, 0.575, 1.250, and



Fig. 12. Vibration of square ethanol drop under surface tension. (a) t = 0 s, (b) t = 0.575 s, (c) t = 1.25 s, (d) t = 1.825 s.
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1.825 s. The initially square shape of the drop results in very strong surface forces at the high-curvature

corners, setting the drop into oscillation. The period of oscillation is approximately 1.25 s. An analytic

expression for the oscillation frequency of a 2D drop in zero gravity [21] is
x2
n ¼

ðn3 � nÞr
ðqd þ qeÞR3

0

; ð30Þ
where qd is the drop density, qe is the density of the external fluid, n is the mode number of oscillation (n = 4

in the present calculation), R0 is unperturbed radius of the drop. Eq. (30) gives a theoretical period of the

oscillation s = 1.299 s by the definition as s = 2p/xn. The oscillation period by the simulation is a little

shorter than the analytic one. The discrepancy comes from the presence of boundaries a finite distance

away, and the effect of nonlinearity in the numerical simulation because the theoretical value by Eq. (30)

is from a linear analysis.
In the numerical calculation, the oscillations damp because of viscosity of fluids. The decay of the oscil-

lation is apparent in the variation of kinetic energy shown in Fig. 13. At about t = 4.0 s, the drop is nearly

circular in cross section. Animations of computational results indicated that the distribution of particles

at interface cause discontinuous changes of interface location. These provide a small impulse trough the

surface tension to sustain the oscillations.



Fig. 13. Kinetic energy versus time for the non-equilibrium rod.
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The mesh refinement study for the non-equilibrium rod is carried out with a fine mesh (Dx = Dy = 0.0015

m). The oscillations of the drop surface about its equilibrium shape are shown in Fig. 14 at a time sequence,

t = 0, 0.5, 1.1, and 1.75 s. The variation of kinetic energy is compared with that by coarse mesh in Fig. 15.

The initially square shape of the drop results in even stronger surface forces at the high-curvature corners

by the fine mesh, resulting a shorter period for the first oscillation. But the period of the following oscilla-
tions is about the same as that by coarse mesh.
3.3. Equilibrium contact angle

By definition, wetting is the ability of liquids to form a boundary surface with solids. It plays an impor-

tant role in many technical processes such as adhesives, coating, oil recovery, gluing cleaning, etc. The phe-

nomenon of wetting or non-wetting of a solid wall by a liquid is illustrated by studying what is known as

contact angle. The contact angle h describes the shape of a liquid drop adsorbed at the solid wall. If h = 0,
the solid wall preferentially adsorbs a layer of liquid, which is described as wetting. While if 0 < h < 90�, the
solid wall is wetted with only cap-shaped liquid drop adsorbed. If h > 90� it is a layer of the gas phase which
is adsorbed at the solid wall, sometimes described as non-wetting.

A liquid drop lying on a solid wall is numerically simulated to observe the equilibrium shape of drop

under different contact angles. A square ethanol drop with q = 797.88 kg/m3 and r = 0.02361 N/m is initially

put on the solid wall. The drop consists of 30 · 30 particles (D = 0.002 m). A small density (q = 1.0 kg/m3) is

given to the background fluid defined on the 146 · 46 mesh (Dx = Dy = 0.002 m). The gravitational and

other external forces are neglected. A large viscosity (l = 10�2 Pa s) is given for the background fluid.
The shapes of the drop at equilibrium state are shown in Fig. 16 under different static contact angles,

heq = 30�, 60�, 90�, 120�, and 150�. The initially square shape of the drop deforms under the strong surface

forces at the high-curvature corners and the adhesive forces of solid wall. The oscillations of drop shape

damp because of large viscosity, and finally an equilibrium state of drop shape is obtained. Fig. 17 gives

the plots of kinetic energy versus time for contact angles 60� and 120� as two examples to demonstrate

the stability of the numerical method.
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Fig. 15. Comparison of kinetic energy for the non-equilibrium rod.

Fig. 14. Vibration of square ethanol drop under surface tension by fine mesh. (a) t = 0 s, (b) t = 0.5 s, (c) t = 1.1 s, (d) t = 1.75 s.
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3.4. Flow induced by wall adhesion

As an example of the effects of wall adhesion, consider a shallow pool of water located at the bottom

of a two-dimensional tank. Assume that the water interface wants to attain a specified contact angle heq
with the tank wall, different from the initial angle of 90� (a horizontal interface). Two different cases are

computed in Figs. 18 and 19, one in which the water wets the wall (heq < 90�), and one in which the water

does not wet the wall (heq > 90�). The results are computed on a 56 · 76 mesh (Dx = Dy = 0.002 m) with

particles representing the water. For the wetting case, the pool of water is 0.05 m deep and heq = 5�. For
the non-wetting case, the pool of water is 0.02 m deep and heq



Fig. 17. kinetic energy versus time for contact angles 60� and 120�.

Fig. 18. Flow induced by wall adhesion for the wetting case. (a) t = 0 s, (b) t = 0.5 s, (c) t = 1.0 s, (d) t = 1.5 s, (e) t = 2.0 s.
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Fig. 19. Flow induced by wall adhesion for the non-wetting case. (a) t = 0 s, (b) t = 0.5 s, (c) t = 1.0 s, (d) t = 2.0 s, (e) t = 3.0 s.

Fig. 20. Initial states of Rayleigh–Taylor instability. (a) Upward disturbance, (b) downward disturbance.
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upward surface forces at contact location. From the sequence of times in Fig. 18, t = 0, 0.5, 1.0, 1.5, and 2.0

s, it is evident that the flow field due to the wall adhesion forces for heq = 5� causes the water to move up the

tank walls until the boundary condition in Eq. (12) is satisfied.

There exists a problem in the calculation. When the water film on the tank wall becomes very thin (for

example, only 2 or 3 particles� thick), here the particle has very few neighbors and the calculation based on
particle interactions is not accurate enough. For example, the calculation of gradient by Eq. (10) or diver-

gence by Eq. (11) is an average process over the neighbors of one particle. This problem causes the interface

unstable after t = 2.0 s in Fig. 18.

In the non-wetting case, a ‘‘ball’’ of water evolves from an initial shallow pool when the wall adhesion

forces are specified on every boundary with heq = 175�. The water behaves in this case like mercury, wanting

to separate itself from the walls since contact angle is obtuse. The shape of water is displayed at times of
Fig. 21. Evolutions of R–T instabilities (t = 0.4, 0.8, and 1.2) without surface tension. (a) Upward disturbance case, (b) downward

disturbance case.
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t = 0, 0.5, 1.0, 2.0, and 3.0 s in Fig. 19. A net upward momentum, evident in Fig. 19(e), is imported to the

water ball by the wall adhesion force, eventually causing it to separate from the bottom wall.

3.5. Rayleigh–Taylor instability

The Rayleigh–Taylor (R–T) instability is created when a heavy fluid is put upon a lighter one and when

the equilibrium state is perturbed. As a basic tow-phase flow phenomenon, the R–T instability is numeri-

cally simulated by using the present method. In the initial state of the phenomenon, the heavier fluid q1 = 3

lies above the lighter one q2 = 1 in a channel with width 1 and height 2. The gravity acceleration is given as

g = 10. Both fluids have the same kinematic viscosity v1 = v2 = 0.01. Two disturbance cases, one is upward

and another is downward, are given by the sinusoidal interfaces with the amplitude 0.06 as shown in Fig.

20. The heavy fluid is represented by particles with distance D = 0.02, and the lighter one is defined on mesh

(Dx = Dy = 0.02). All quantities mentioned above are non-dimensional.
The various behaviors of the two-phase system are observed at equivalent times and the effects of surface

tension are illustrated. Fig. 21 shows the evolutions (t = 0.4, 0.8 and 1.2) of instabilities of the two cases

without surface tension (r = 0). In upward disturbance case, the lighter fluid moves upward and a bubble

is formed. While in downward disturbance case, a jet of heavier fluid falls down. Further developments of

the phenomenon mix the fluids to the dispersed state, because there is no surface tension which would limit

the dispersion.

The growth rate of the R–T instability is given by [20]
n2 ¼ kg A� k2r
gðq1 þ q2Þ

� �
; ð31Þ
where k is the wave number of the perturbation, g is the gravitational acceleration perpendicular to the in-

terface, and A = (q2 � q1)/(q2 + q1) is the Atwood number. The perturbation of interface will grow expo-

nentially in time as exp(nt) for small amplitudes. The effect of fluid viscosity on the development of the

R–T instability, which plays a stabilizing role, has been ignored in Eq. (31). The correction to the growth
rate that takes the viscous effect into account is given by the positive root of [22]
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Fig. 22. Development of the interface in R–T instabilities without surface tension.



Fig. 23

case.
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n2 þ 2vk2n� kgA ¼ 0; ð32Þ
where v is the kinematic viscosity.

To examine the accuracy of the present numerical method, the growth rate of R–T instability in the

downward disturbance case without surface tension is compared with the analytic values given by Eqs.

(31) and (32). Here the Atwood number is A = 0.5, and the wave number k can be estimated by the wave-

length k as k = 2p/k. The growth rate by Eq. (31) is about n1 = 8.68, and the growth rate by Eq. (32) is

n2 = 6.50. The comparison of the interface developments between the simulation result and the analytic
values calculated by n1 and n2 is given in Fig. 22. The comparison shows that, for small amplitudes, the

simulation result agrees well with the analytic growth rate n2 = 6.50, which validates the damping effect

of the viscosity. When the amplitudes become large, the heavy fluid rolls up with a slight downward

velocity.
. Evolutions of R–T instabilities (t = 0.4, 0.8, and 1.2) with fine mesh. (a) Upward disturbance case, (b) downward disturbance



88 J. Liu et al. / Journal of Computational Physics 202 (2005) 65–93
Fig. 23 shows the evolutions (t = 0.4, 0.8, and 1.2) of above instabilities with a fine mesh (Dx = Dy = 0.01

m). Compared with coarse mesh in Fig. 21, the outlines of the interfaces become clear, although the am-

plitudes of the jet show a weak dependence on resolution.

Fig. 24 shows the developments of instability of the two cases with a surface tension (r = 0.127) at

times of t = 0.5, 1.0, and 1.5. The effect of surface tension is effectively observed that the surface force
tends to make the interface as flat as possible. The curvatures of the interfaces are less than those without

surface tension. The growth rate of R–T instability in the downward disturbance case by Eq. (31) with

surface tension (r = 0.127) is about n = 4.91. The comparison of the interface developments between the

simulation result and the analytic value calculated by n = 4.91 is given in Fig. 25. The comparison shows

that, for small amplitudes, the simulation result agrees well with the analytic value.
Fig. 24. Evolutions of R–T instabilities (t = 0.5, 1.0, and 1.5) with surface tension (r = 0.127). (a) Upward disturbance case, (b)

downward disturbance case.



Fig. 25. Development of the interface in R–T instabilities with surface tension (r = 0.127).
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A critical surface tension, rc, can be calculated from Eq. (31) for which the growth rate becomes zero

(n = 0). If it is assumed that the wavelength equals to the width of the channel, the critical surface tension

is about rc = 0.253. The R–T instabilities of the two disturbance cases are simulated with this critical sur-

face tension. Fig. 26 gives the evolutions of instability at times of t = 1.0, 2.0, and 3.0, which show the

deformations of the interface in a, different way. Although the disturbance initiates the instability, the

surface tension prohibits it from developing. Due to the numerical error, the symmetric state of the sys-

tem is lost, which results in another disturbance on the balance of interface. The perturbation develops

and finally the heavy fluid flows downward near one sidewall of tank. The phenomena can be explained
that the perturbation tends to develop under a larger wavelength than the width of the channel. There-

fore, the critical surface tension increases with larger wavelength and the stability parameter U = r/rc be-
comes less than 1.0.

3.6. Kelvin–Helmholtz instability

The Kelvin–Helmholtz instability is a fundamental instability of incompressible fluid flow, which

will arise, for example, from two parallel fluids of different densities moving at different velocities.
The likelihood of Kelvin–Helmholtz instability can be evaluated by means of the Richardson�s number

(Ri) [23]:
Richardson number ¼ Stabilizing Buoyancy

Destabilizing Shear
: ð33Þ
The instability occurs when the destabilizing shear is strong enough to break up the stable layer across

the interface between two fluids.

Here a simple way is considered to generate the Kelvin–Helmholtz instability. In a long narrow tank a

lighter freshwater rests on a heavier saltwater with a stable boundary between the two fluids. If the tank is
tilt at a angle, the saltwater flows down and the freshwater flows upward, causing a current speed difference

at the boundary of the two types of water. When the current speed difference exceeds a certain level, the

current becomes unstable. The nonlinear growth and evolution of this interface are governed by only

the competing effects of the buoyancy and shear.



Fig. 26. Evolutions of R–T instabilities (t = 1.0, 2.0 and 3.0) with surface tension (r = 0.253). (a) Upward disturbance case, (b)

downward disturbance case.
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The calculation is carried out on a two-dimensional geometry shown in Fig. 27(a) with the present

method. To tilt the tank is equivalent to give the gravity in the direction different from downward vertically

(with an angle h = 30�). The densities of freshwater and saltwater are 1000 and 1050 kg/m3, respectively.

The gravity acceleration is given as g = 9.8 m/s2. Surface tension is neglected. The saltwater is represented
by particles with distance D = 0.002 m, and the freshwater is defined on mesh (Dx = Dy = 0.002 m), shown

in Fig. 27(b).

Fig. 28 shows the evolution of instability at times of t = 1.2, 1.4, 1.6, 1.8, and 2.0. The interface rolls up

and forms a wave which grows quickly. In the present calculations, the freshwater and saltwater flow to

either side without mixing. However, in the experiments [23] the two kinds of fluid mix violently and the

mixing finally ends up with a turbulent state.



Fig. 27. Calculation condition for Kelvin–Helmhotz instability. (a) Calculation geometry, (b) initial setup of mesh and particles.

Fig. 28. Evolution of Kelvin–Helmhotz instability. (a) t = 1.2 s, (b) t = 1.4 s, (c) t = 1.6 s, (d) t = 1.8 s, (e) t = 2.0 s.
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4. Conclusions

A hybrid numerical method that coupled the mesh and particle has been developed for the unsteady,

incompressible, multiphase flows. One phase (usually the liquid phase) is represented by the particles

and another phase (usually the gas phase) is defined on mesh. The formulation of discontinuous interface



92 J. Liu et al. / Journal of Computational Physics 202 (2005) 65–93
problem as a continuum problem is realized by extrapolating the density and viscosity of particles onto

mesh. The conservation equations are solved on the stationary mesh with finite-volume method, and the

sharp interface is automatically tracked by the moving particles. This prevents both numerical diffusion

and oscillations and allows surface tension to be incorporated in a natural way. The original Eulerian mesh

is retained through the simulation. A simple SOR method is used in solving the pressure equation, which is
successful in large density ratio problems. Since a conservative finite volume scheme is used, no special

treatment is needed near the interface. The use of a regular fixed mesh makes coding the method relatively

simple. Several test cases suggest that the method is both robust and computationally efficient.

The CSF models used to calculate the surface tension effects at the interfaces and the wall adhesion. The

surface tension model has been validated on both static and dynamic interfaces having surface tension. It

has been applied successfully to a number of fluid flows driven by surface tension.

There is no limitation of the method for three-dimensional simulations. Furthermore, the interface is de-

termined by the distribution of particles, no special algorithm is necessary to deal with interface interac-
tions. The mass conservation of different phases is also preserved by the Lagrangian particles.

The method could be improved to achieve higher accuracy and faster convergent rate by the use of more

sophisticated interactions between particles and mesh. A smoothing technique is required to compute the

surface tension. Some high order upwind schemes will be used for the advection terms at high Reynolds

numbers.

Although the present method has been tested extensively on two-dimensional problems, the major pur-

pose of developing this method is to simulate fully three-dimensional multiphase flows. The test cases pre-

sented here suggest that large simulations involving interacting interfaces are entirely feasible. The
implementation of the method in three dimensions appear to be straightforward and the method would

be extended to many new and physically interesting problems.
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